A comparison between joint regression analysis and the additive main and multiplicative interaction model: The robustness with increasing amounts of missing data

Paulo Canas Rodrigues, Dulce Gamito Santinhos Pereira, JT Mexia

    Tutkimustuotos: KeskustelupuheenvuoroScientificvertaisarvioitu

    19 Sitaatiot (Scopus)

    Abstrakti

    This paper joins the main properties of joint regression analysis (JRA), a model based on the FinlayWilkinson regression to analyse multi-environment trials, and of the additive main effects and multiplicative interaction (AMMI) model. The study compares JRA and AMMI with particular focus on robustness with increasing amounts of randomly selected missing data. The application is made using a data set from a breeding program of durum wheat (Triticum turgidum L., Durum Group) conducted in Portugal. The results of the two models result in similar dominant cultivars (JRA) and winner of mega-environments (AMMI) for the same environments. However, JRA had more stable results with the increase in the incidence rates of missing values.

    AlkuperäiskieliEnglanti
    Sivut679-686
    Sivumäärä8
    JulkaisuSCIENTIA AGRICOLA
    Vuosikerta68
    Numero6
    DOI - pysyväislinkit
    TilaJulkaistu - 2011
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Tutkimusalat

    • Ammi models
    • Durum wheat
    • Genotype by environment interaction
    • Joint regression analysis
    • Missing values

    Julkaisufoorumi-taso

    • Ei tasoa

    Sormenjälki

    Sukella tutkimusaiheisiin 'A comparison between joint regression analysis and the additive main and multiplicative interaction model: The robustness with increasing amounts of missing data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä