Abstrakti
This paper joins the main properties of joint regression analysis (JRA), a model based on the FinlayWilkinson regression to analyse multi-environment trials, and of the additive main effects and multiplicative interaction (AMMI) model. The study compares JRA and AMMI with particular focus on robustness with increasing amounts of randomly selected missing data. The application is made using a data set from a breeding program of durum wheat (Triticum turgidum L., Durum Group) conducted in Portugal. The results of the two models result in similar dominant cultivars (JRA) and winner of mega-environments (AMMI) for the same environments. However, JRA had more stable results with the increase in the incidence rates of missing values.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 679-686 |
Sivumäärä | 8 |
Julkaisu | SCIENTIA AGRICOLA |
Vuosikerta | 68 |
Numero | 6 |
DOI - pysyväislinkit |
|
Tila | Julkaistu - 2011 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Tutkimusalat
- Ammi models
- Durum wheat
- Genotype by environment interaction
- Joint regression analysis
- Missing values
Julkaisufoorumi-taso
- Ei tasoa