A convolutional neural network approach for acoustic scene classification

Michele Valenti, Stefano Squartini, Aleksandr Diment, Giambattista Parascandolo, Tuomas Virtanen

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    71 Sitaatiot (Scopus)
    72 Lataukset (Pure)

    Abstrakti

    This paper presents a novel application of convolutional neural networks (CNNs) for the task of acoustic scene classification (ASC). We here propose the use of a CNN trained to classify short sequences of audio, represented by their log-mel spectrogram. We also introduce a training method that can be used under particular circumstances in order to make full use of small datasets. The proposed system is tested and evaluated on three different ASC datasets and compared to other state-of-the-art systems which competed in the 'Detection and Classification of Acoustic Scenes and Events' (DCASE) challenges held in 20161 and 2013. The best accuracy scores obtained by our system on the DCASE 2016 datasets are 79.0% (development) and 86.2% (evaluation), which constitute a 6.4% and 9% improvements with respect to the baseline system. Finally, when tested on the DCASE 2013 evaluation dataset, the proposed system manages to reach a 77.0% accuracy, improving by 1% the challenge winner's score.

    AlkuperäiskieliEnglanti
    Otsikko2017 International Joint Conference on Neural Networks, IJCNN 2017
    KustantajaIEEE
    Sivut1547-1554
    Sivumäärä8
    ISBN (elektroninen)9781509061815
    DOI - pysyväislinkit
    TilaJulkaistu - 30 kesäk. 2017
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaINTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS -
    Kesto: 1 tammik. 1900 → …

    Julkaisusarja

    Nimi
    ISSN (elektroninen)2161-4407

    Conference

    ConferenceINTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS
    Ajanjakso1/01/00 → …

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Software
    • Artificial Intelligence

    Sormenjälki

    Sukella tutkimusaiheisiin 'A convolutional neural network approach for acoustic scene classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä