Abstrakti
Digital predistortion (DPD) has important applications in wireless communication for smart systems, such as, for example, in Internet of Things (IoT) applications for smart cities. DPD is used in wireless communication transmitters to counteract distortions that arise from nonlinearities, such as those related to amplifier characteristics and local oscillator leakage. In this paper, we propose an algorithm-architecture-integrated framework for design and implementation of adaptive DPD systems. The proposed framework provides energy-efficient, real-time DPD performance, and enables efficient reconfiguration of DPD architectures so that communication can be dynamically optimized based on time-varying communication requirements. Our adaptive DPD design framework applies Markov Decision Processes (MDPs) in novel ways to generate optimized runtime control policies for DPD systems. We present a GPU-based adaptive DPD system that is derived using our design framework, and demonstrate its efficiency through extensive experiments.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2019 |
Kustantaja | IEEE |
Sivut | 112-116 |
Sivumäärä | 5 |
ISBN (elektroninen) | 9781538678848 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 maalisk. 2019 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Artificial Intelligence Circuits and Systems - Hsinchu, Taiwan Kesto: 18 maalisk. 2019 → 20 maalisk. 2019 |
Conference
Conference | IEEE International Conference on Artificial Intelligence Circuits and Systems |
---|---|
Maa/Alue | Taiwan |
Kaupunki | Hsinchu |
Ajanjakso | 18/03/19 → 20/03/19 |
Julkaisufoorumi-taso
- Jufo-taso 1
!!ASJC Scopus subject areas
- Artificial Intelligence
- Hardware and Architecture
- Electrical and Electronic Engineering