A k-nearest neighbor multilabel ranking algorithm with application to content-based image retrieval

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    5 Sitaatiot (Scopus)

    Abstrakti

    Multilabel ranking is an important machine learning task with many applications, such as content-based image retrieval (CBIR). However, when the number of labels is large, traditional algorithms are either infeasible or show poor performance. In this paper, we propose a simple yet effective multilabel ranking algorithm that is based on k-nearest neighbor paradigm. The proposed algorithm ranks labels according to the probabilities of the label association using the neighboring samples around a query sample. Different from traditional approaches, we take only positive samples into consideration and determine the model parameters by directly optimizing ranking loss measures. We evaluated the proposed algorithm using four popular multilabel datasets. The proposed algorithm achieves equivalent or better performance than other instance-based learning algorithms. When applied to a CBIR system with a dataset of 1 million samples and over 190 thousand labels, which is much larger than any other multilabel datasets used earlier, the proposed algorithm clearly outperforms the competing algorithms.

    AlkuperäiskieliEnglanti
    Otsikko2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
    KustantajaIEEE
    Sivut2587-2591
    Sivumäärä5
    ISBN (elektroninen)9781509041176
    DOI - pysyväislinkit
    TilaJulkaistu - 16 kesäk. 2017
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaIEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING -
    Kesto: 1 tammik. 19001 tammik. 2000

    Julkaisusarja

    Nimi
    ISSN (elektroninen)2379-190X

    Conference

    ConferenceIEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING
    Ajanjakso1/01/001/01/00

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Software
    • Signal Processing
    • Electrical and Electronic Engineering

    Sormenjälki

    Sukella tutkimusaiheisiin 'A k-nearest neighbor multilabel ranking algorithm with application to content-based image retrieval'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä