A More Secure Split: Enhancing the Security of Privacy-Preserving Split Learning

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Split learning (SL) is a new collaborative learning technique that allows participants, e.g. a client and a server, to train machine learning models without the client sharing raw data. In this setting, the client initially applies its part of the machine learning model on the raw data to generate Activation Maps (AMs) and then sends them to the server to continue the training process. Previous works in the field demonstrated that reconstructing AMs could result in privacy leakage of client data. In addition to that, existing mitigation techniques that overcome the privacy leakage of SL prove to be significantly worse in terms of accuracy. In this paper, we improve upon previous works by constructing a protocol based on U-shaped SL that can operate on homomorphically encrypted data. More precisely, in our approach, the client applies homomorphic encryption on the AMs before sending them to the server, thus protecting user privacy. This is an important improvement that reduces privacy leakage in comparison to other SL-based works. Finally, our results show that, with the optimum set of parameters, training with HE data in the U-shaped SL setting only reduces accuracy by 2.65% compared to training on plaintext. In addition, raw training data privacy is preserved.
AlkuperäiskieliEnglanti
OtsikkoSecure IT Systems
Alaotsikko28th Nordic Conference, NordSec 2023, Oslo, Norway, November 16–17, 2023, Proceedings
ToimittajatLothar Fritsch, Ismail Hassan, Ebenezer Paintsil
JulkaisupaikkaCham
KustantajaSpringer
Sivut307-329
Sivumäärä23
ISBN (painettu)978-3-031-47748-5
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaNordic Conference on Secure IT Systems - NordSec - Oslo, Norja
Kesto: 16 marrask. 202317 marrask. 2023

Julkaisusarja

NimiLecture Notes in Computer Science
Vuosikerta14324
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceNordic Conference on Secure IT Systems - NordSec
Maa/AlueNorja
KaupunkiOslo
Ajanjakso16/11/2317/11/23

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'A More Secure Split: Enhancing the Security of Privacy-Preserving Split Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä