A Multi-room Reverberant Dataset for Sound Event Localization and Detection

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

Abstrakti

This paper presents the sound event localization and detection (SELD) task setup for the DCASE 2019 challenge. The goal of the SELD task is to detect the temporal activities of a known set of sound event classes, and further localize them in space when active. As part of the challenge, a synthesized dataset where each sound event associated with a spatial coordinate represented using azimuth and elevation angles is provided. These sound events are spatialized using real-life impulse responses collected at multiple spatial coordinates in five different rooms with varying dimensions and material properties. A baseline SELD method employing a convolutional recurrent neural network is used to generate benchmark scores for this reverberant dataset. The benchmark scores are obtained using the recommended cross-validation setup.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the Detection and Classification of Acoustic Scenes and Events 2019 Workshop (DCASE2019)
Sivut10-14
ISBN (elektroninen)978-0-578-59596-2
TilaJulkaistu - lokak. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaWorkshop on Detection and Classification of Acoustic Scenes and Events - New York, Yhdysvallat
Kesto: 25 lokak. 201926 lokak. 2019

Workshop

WorkshopWorkshop on Detection and Classification of Acoustic Scenes and Events
LyhennettäDCASE
Maa/AlueYhdysvallat
KaupunkiNew York
Ajanjakso25/10/1926/10/19

Julkaisufoorumi-taso

  • Ei tasoa

Sormenjälki

Sukella tutkimusaiheisiin 'A Multi-room Reverberant Dataset for Sound Event Localization and Detection'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä