A Multi-Stain Breast Cancer Histological Whole-Slide-Image Data Set from Routine Diagnostics

Philippe Weitz, Masi Valkonen, Leslie Solorzano, Circe Carr, Kimmo Kartasalo, Constance Boissin, Sonja Koivukoski, Aino Kuusela, Dusan Rasic, Yanbo Feng, Sandra Sinius Pouplier, Abhinav Sharma, Kajsa Ledesma Eriksson, Leena Latonen, Anne Vibeke Laenkholm, Johan Hartman, Pekka Ruusuvuori, Mattias Rantalainen

    Tutkimustuotos: Data-artikkelivertaisarvioitu

    2 Sitaatiot (Scopus)
    19 Lataukset (Pure)

    Abstrakti

    The analysis of FFPE tissue sections stained with haematoxylin and eosin (H&E) or immunohistochemistry (IHC) is essential for the pathologic assessment of surgically resected breast cancer specimens. IHC staining has been broadly adopted into diagnostic guidelines and routine workflows to assess the status of several established biomarkers, including ER, PGR, HER2 and KI67. Biomarker assessment can also be facilitated by computational pathology image analysis methods, which have made numerous substantial advances recently, often based on publicly available whole slide image (WSI) data sets. However, the field is still considerably limited by the sparsity of public data sets. In particular, there are no large, high quality publicly available data sets with WSIs of matching IHC and H&E-stained tissue sections from the same tumour. Here, we publish the currently largest publicly available data set of WSIs of tissue sections from surgical resection specimens from female primary breast cancer patients with matched WSIs of corresponding H&E and IHC-stained tissue, consisting of 4,212 WSIs from 1,153 patients.

    AlkuperäiskieliEnglanti
    Artikkeli562
    Sivumäärä6
    JulkaisuScientific Data
    Vuosikerta10
    DOI - pysyväislinkit
    TilaJulkaistu - elok. 2023
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Statistics and Probability
    • Information Systems
    • Education
    • Computer Science Applications
    • Statistics, Probability and Uncertainty
    • Library and Information Sciences

    Sormenjälki

    Sukella tutkimusaiheisiin 'A Multi-Stain Breast Cancer Histological Whole-Slide-Image Data Set from Routine Diagnostics'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä