A Reliable Method to Estimate the Bispectral Index Value Using a Single Frontal EEG Channel for Intra and Inter Subject Variability

Mohammad Shahbakhti, Matin Beiramvand, Roza Krycinska, Erfan Nasiri, Wei Chen, Jordi Solé-Casals, Michal Wierzchon, Anna Broniec-Wójcik, Piotr Augustyniak, Vaidotas Marozas

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

Objective: Monitoring the depth of anesthesia (DoA) plays an important role for administering the drug injection during a surgery, i.e., preventing undesired awareness and inordinate anesthetic depth. Although the bispectral index (BIS) monitor is the golden standard system for the DoA monitoring, it is still not affordable for the developing countries. Alternatively, a low-cost electroencephalogram (EEG) headband can be used. The objective of this paper is to present a new algorithm for estimating the BIS values using a single frontal EEG channel. Method: In the first step, the EEG signal is filtered for the elimination of artifacts and is split into its sub-bands. In the second step, several linear and nonlinear features are extracted from each sub-band and fed to a random forest regression model in order to estimate the BIS. The performance of the proposed algorithm is assessed using EEG data recorded from twenty-four subjects during the general anesthesia and is validated in terms of correlation coefficient (CC) and absolute error (AE) between the reference and estimated BIS values. Results: The proposed algorithm achieved the mean CC of 0.83 and AE of 6.5 for intra subject variability and mean CC of 0.87 and AE of 5.5 for inter subject variability. Significance: Given the similar results for both intra and inter subject variability, the proposed algorithm has the potential to be used in the real-world scenario.
AlkuperäiskieliEnglanti
Otsikko2023 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2023 - Conference Proceedings
KustantajaIEEE
ISBN (elektroninen)978-1-6654-9384-0
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Symposium on Medical Measurements and Applications - Jeju, Etelä-Korea
Kesto: 14 kesäk. 202316 kesäk. 2023

Conference

ConferenceIEEE International Symposium on Medical Measurements and Applications
LyhennettäMeMeA
Maa/AlueEtelä-Korea
KaupunkiJeju
Ajanjakso14/06/2316/06/23

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'A Reliable Method to Estimate the Bispectral Index Value Using a Single Frontal EEG Channel for Intra and Inter Subject Variability'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä