AI-based condition monitoring of a variable displacement axial piston pump

Abid Abdul Azeez, Elina Vuorinen, Tatiana Minav, Paolo Casoli

Tutkimustuotos: KonferenssiartikkeliProfessional

Abstrakti

Conventional condition monitoring involves integration of additional sensors for fault detection and diagnosis. They are costly and sensitive to faults themselves. To overcome these issues and data scarcity, simulation model data is used as a source of training data for Artificial Intelligence based condition monitoring of the axial piston pump. The sensitivity of the simulation model is improved by performing data augmentation. The classification of faults for condition monitoring in the model is performed by developing a classifier utilizing machine learning algorithm. This was tested for experimental, simulation, and augmented simulation data with respective accuracy scores of 84.8%, 70.1%, and 75.7%. Hence, augmented simulation data is a suitable option for online condition monitoring.
AlkuperäiskieliEnglanti
OtsikkoThe 13th International Fluid Power Conference
ToimittajatKatharina Schmitz
JulkaisupaikkaAachen, Germany
Sivut921-931
TilaJulkaistu - kesäk. 2022
OKM-julkaisutyyppiD3 Artikkeli ammatillisessa konferenssijulkaisussa
TapahtumaInternational Fluid Power Conference - Aachen, Saksa
Kesto: 13 kesäk. 202215 kesäk. 2022
Konferenssinumero: 13

Conference

ConferenceInternational Fluid Power Conference
Maa/AlueSaksa
KaupunkiAachen
Ajanjakso13/06/2215/06/22

Sormenjälki

Sukella tutkimusaiheisiin 'AI-based condition monitoring of a variable displacement axial piston pump'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä