AI is a viable alternative to high throughput screening: a 318-target study

The Atomwise AIMS Program, Izhar Wallach, Denzil Bernard, Kong Nguyen, Gregory Ho, Adrian Morrison, Adrian Stecula, Andreana Rosnik, Ann Marie O’Sullivan, Aram Davtyan, Ben Samudio, Bill Thomas, Brad Worley, Brittany Butler, Christian Laggner, Desiree Thayer, Ehsan Moharreri, Greg Friedland, Ha Truong, Henry van den BedemHo Leung Ng, Kate Stafford, Krishna Sarangapani, Kyle Giesler, Lien Ngo, Michael Mysinger, Mostafa Ahmed, Nicholas J. Anthis, Niel Henriksen, Pawel Gniewek, Sam Eckert, Saulo de Oliveira, Shabbir Suterwala, Srimukh Veccham Krishna PrasadPrasad, Stefani Shek, Stephanie Contreras, Stephanie Hare, Teresa Palazzo, Terrence E. O’Brien, Tessa Van Grack, Tiffany Williams, Ting Rong Chern, Victor Kenyon, Andreia H. Lee, Andrew B. Cann, Bastiaan Bergman, Brandon M. Anderson, Anniina Virtanen, Kirsikka Musta, Olli Silvennoinen, Teemu Haikarainen

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

29 Sitaatiot (Scopus)
6 Lataukset (Pure)

Abstrakti

High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery.

AlkuperäiskieliEnglanti
Artikkeli7526
JulkaisuScientific Reports
Vuosikerta14
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • General

Sormenjälki

Sukella tutkimusaiheisiin 'AI is a viable alternative to high throughput screening: a 318-target study'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä