Algorithmic computation of knot polynomials of secondary structure elements of proteins

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

14 Sitaatiot (Scopus)

Abstrakti

The classification of protein structures is an important and still outstanding problem. The purpose of this paper is threefold. First, we utilize a relation between the Tutte and homfly polynomial to show that the Alexander-Conway polynomial can be algorithmically computed for a given planar graph. Second, as special cases of planar graphs, we use polymer graphs of protein structures. More precisely, we use three building blocks of the three-dimensional protein structure - α-helix, antiparallel β-sheet, and parallel β-sheet - and calculate, for their corresponding polymer graphs, the Tutte polynomials analytically by providing recurrence equations for all three secondary structure elements. Third, we present numerical results comparing the results from our analytical calculations with the numerical results of our algorithm - not only to test consistency, but also to demonstrate that all assigned polynomials are unique labels of the secondary structure elements. This paves the way for an automatic classification of protein structures.

AlkuperäiskieliEnglanti
Sivut1503-1512
Sivumäärä10
JulkaisuJournal of Computational Biology
Vuosikerta13
Numero8
DOI - pysyväislinkit
TilaJulkaistu - 1 lokak. 2006
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

!!ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Computational Mathematics
  • Modelling and Simulation
  • Computational Theory and Mathematics

Sormenjälki

Sukella tutkimusaiheisiin 'Algorithmic computation of knot polynomials of secondary structure elements of proteins'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä