An expandable image database for evaluation of full-reference image visual quality metrics

Mykola Ponomarenko, Oleg Ieremeiev, Vladimir Lukin, Karen Egiazarian

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

2 Sitaatiot (Scopus)


Traditional approach to collect mean opinion score (MOS) values for evaluation of full-reference image quality metrics has two serious drawbacks. The first drawback is a nonlinearity of MOS, only partially compensated by the use of rank order correlation coefficients in a further analysis. The second drawback are limitations on number of distortion types and distortion levels in image database imposed by a maximum allowed time to carry out an experiment. One of the largest of databases used for this purpose, TID2013, has almost reached these limitations, which makes an extension of TID2013 within the boundaries of this approach to be practically unfeasible. In this paper, a novel methodology to collect MOS values, with a possibility to infinitely increase a size of a database by adding new types of distortions, is proposed. For the proposed methodology, MOS values are collected for pairs of distortions, one of them being a signal dependent Gaussian noise. A technique of effective linearization and normalization of MOS is described. Extensive experiments for linearization of MOS values to extend TID2013 database are carried out.

JulkaisuIS and T International Symposium on Electronic Imaging Science and Technology
DOI - pysyväislinkit
TilaJulkaistu - 26 tammik. 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
TapahtumaImage Processing: Algorithms and Systems -
Kesto: 26 tammik. 202030 tammik. 2020


  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Human-Computer Interaction
  • Software
  • Electrical and Electronic Engineering
  • Atomic and Molecular Physics, and Optics


Sukella tutkimusaiheisiin 'An expandable image database for evaluation of full-reference image visual quality metrics'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä