Assessment of Mental Workload in Real-Life Setup using EEG Synchronization Measures

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

1 Lataukset (Pure)

Abstrakti

EEG data from prefrontal channels AF7 and AF8 acquired using the consumer-oriented MUSE-S device were analyzed for the classification of mental workload levels during an n-back memory game. 30 subjects were enrolled to the study. Each recording session contained 9 games of 3 different levels. The feature set included features based on magnitude-squared coherence, spectral entropy, phase locking value and the newly introduced coherence entropy. The AdaBoost classifier was used to evaluate the performance of the feature sets. In 3-class classification, accuracy of 0.93 was obtained with the full feature set. It was found that game levels 0 and 2 were more difficult to discriminate compared to levels 0 and 1. Besides the full feature set, spectral entropy based features also showed outstanding performance.

AlkuperäiskieliEnglanti
Otsikko2024 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd4.0 and IoT 2024 - Proceedings
KustantajaIEEE
Sivut412-416
Sivumäärä5
ISBN (elektroninen)9798350385823
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Workshop on Metrology for Industry 4.0 and IoT - Firenze, Italia
Kesto: 29 toukok. 202431 toukok. 2024

Julkaisusarja

NimiProceedings IEEE International Workshop on Metrology for Industry 4.0 and IoT
ISSN (elektroninen)2837-0872

Conference

ConferenceIEEE International Workshop on Metrology for Industry 4.0 and IoT
Maa/AlueItalia
KaupunkiFirenze
Ajanjakso29/05/2431/05/24

Julkaisufoorumi-taso

  • Jufo-taso 0

!!ASJC Scopus subject areas

  • Biomedical Engineering
  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Industrial and Manufacturing Engineering
  • Modelling and Simulation
  • Instrumentation

Sormenjälki

Sukella tutkimusaiheisiin 'Assessment of Mental Workload in Real-Life Setup using EEG Synchronization Measures'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä