Abstrakti
We develop methods for pricing European options under general mean-reverting stochastic volatility dynamics, which can be used with both affine and non-affine volatility models. In our methods, the option price under stochastic volatility is expanded as a power series of parameters or variables by transferring the original partial differential equation to a set of solvable inhomogeneous Black–Scholes equations. The analytic approximation is more generally applicable than the fast Fourier transform, because it does not rely on the existence of a characteristic function. Finally, we numerically demonstrate our approach with the Heston, 3/2, and continuous-time GARCH models.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 1-10 |
Sivumäärä | 10 |
Julkaisu | Finance Research Letters |
Vuosikerta | 14 |
DOI - pysyväislinkit | |
Tila | Julkaistu - elok. 2015 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Julkaisufoorumi-taso
- Jufo-taso 1
!!ASJC Scopus subject areas
- Economics, Econometrics and Finance(all)
- Business, Management and Accounting(all)
- Applied Mathematics