Audio-Based Sequential Music Recommendation

Rodrigo Borges, Marcelo Queiroz

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

15 Lataukset (Pure)

Abstrakti

We propose an audio-based recommendation model designed to predict the upcoming track within a listening session, given the audio associated with the current track. Instead of relying on users' feedback, as most recommenders, the proposed model aims to learn intrinsic audio elements that can be leveraged in the context of sequential recommendation. The proposed model is evaluated using Mel-spectrogram and raw audio as input data and, in its best configuration, was able to predict almost 65% unseen transitions used in the evaluation phase, and 3.5% cold-start transitions, i.e. transitions from tracks that were never seen by the model.

AlkuperäiskieliEnglanti
Otsikko31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings
KustantajaEuropean Signal Processing Conference, EUSIPCO
Sivut421-425
Sivumäärä5
ISBN (elektroninen)9789464593600
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Signal Processing Conference - Helsinki, Suomi
Kesto: 4 syysk. 20238 syysk. 2023

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491
ISSN (elektroninen)2076-1465

Conference

ConferenceEuropean Signal Processing Conference
Maa/AlueSuomi
KaupunkiHelsinki
Ajanjakso4/09/238/09/23

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'Audio-Based Sequential Music Recommendation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä