Audiogmenter: a MATLAB toolbox for audio data augmentation

Gianluca Maguolo, Michelangelo Paci, Loris Nanni, Ludovico Bonan

    Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

    12 Sitaatiot (Scopus)
    3 Lataukset (Pure)

    Abstrakti

    Purpose: Create and share a MATLAB library that performs data augmentation algorithms for audio data. This study aims to help machine learning researchers to improve their models using the algorithms proposed by the authors. Design/methodology/approach: The authors structured our library into methods to augment raw audio data and spectrograms. In the paper, the authors describe the structure of the library and give a brief explanation of how every function works. The authors then perform experiments to show that the library is effective. Findings: The authors prove that the library is efficient using a competitive dataset. The authors try multiple data augmentation approaches proposed by them and show that they improve the performance. Originality/value: A MATLAB library specifically designed for data augmentation was not available before. The authors are the first to provide an efficient and parallel implementation of a large number of algorithms.

    AlkuperäiskieliEnglanti
    JulkaisuApplied Computing and Informatics
    DOI - pysyväislinkit
    TilaE-pub ahead of print - 2021
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 0

    !!ASJC Scopus subject areas

    • Software
    • Information Systems
    • Computer Science Applications

    Sormenjälki

    Sukella tutkimusaiheisiin 'Audiogmenter: a MATLAB toolbox for audio data augmentation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä