Abstrakti
Purpose: Create and share a MATLAB library that performs data augmentation algorithms for audio data. This study aims to help machine learning researchers to improve their models using the algorithms proposed by the authors. Design/methodology/approach: The authors structured our library into methods to augment raw audio data and spectrograms. In the paper, the authors describe the structure of the library and give a brief explanation of how every function works. The authors then perform experiments to show that the library is effective. Findings: The authors prove that the library is efficient using a competitive dataset. The authors try multiple data augmentation approaches proposed by them and show that they improve the performance. Originality/value: A MATLAB library specifically designed for data augmentation was not available before. The authors are the first to provide an efficient and parallel implementation of a large number of algorithms.
Alkuperäiskieli | Englanti |
---|---|
Julkaisu | Applied Computing and Informatics |
DOI - pysyväislinkit | |
Tila | E-pub ahead of print - 2021 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Julkaisufoorumi-taso
- Jufo-taso 0
!!ASJC Scopus subject areas
- Software
- Information Systems
- Computer Science Applications