Automated classification of multiphoton microscopy images of ovarian tissue using deep learning

Mikko J Huttunen, Abdurahman Hassan, Curtis W Mccloskey, Sijyl Fasih, Jeremy Upham, Barbara C Vanderhyden, Robert W Boyd, Sangeeta Murugkar

    Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

    17 Sitaatiot (Scopus)
    130 Lataukset (Pure)

    Abstrakti

    Histopathological image analysis of stained tissue slides is routinely used in tumor detection and classification. However, diagnosis requires a highly trained pathologist and can thus be time-consuming, labor-intensive, and potentially risk bias. Here, we demonstrate a potential complementary approach for diagnosis. We show that multiphoton microscopy images from unstained, reproductive tissues can be robustly classified using deep learning techniques. We fine-train four pretrained convolutional neural networks using over 200 murine tissue images based on combined second-harmonic generation and two-photon excitation fluo- rescence contrast, to classify the tissues either as healthy or associated with high-grade serous carcinoma with over 95% sensitivity and 97% specificity. Our approach shows promise for applications involving automated disease diagnosis. It could also be readily applied to other tissues, diseases, and related classification problems.
    AlkuperäiskieliEnglanti
    JulkaisuJOURNAL OF BIOMEDICAL OPTICS
    Vuosikerta23
    Numero6
    DOI - pysyväislinkit
    TilaJulkaistu - 13 kesäk. 2018
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 1

    Sormenjälki

    Sukella tutkimusaiheisiin 'Automated classification of multiphoton microscopy images of ovarian tissue using deep learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä