Automatic analysis of the emotional content of speech in daylong child-centered recordings from a neonatal intensive care unit

Einari Vaaras, Sari Ahlqvist-Björkroth, Konstantinos Drossos, Okko Räsänen

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

1 Sitaatiot (Scopus)
4 Lataukset (Pure)

Abstrakti

Researchers have recently started to study how the emotional speech heard by young infants can affect their developmental outcomes. As a part of this research, hundreds of hours of daylong recordings from preterm infants' audio environments were collected from two hospitals in Finland and Estonia in the context of so-called APPLE study. In order to analyze the emotional content of speech in such a massive dataset, an automatic speech emotion recognition (SER) system is required. However, there are no emotion labels or existing indomain SER systems to be used for this purpose. In this paper, we introduce this initially unannotated large-scale real-world audio dataset and describe the development of a functional SER system for the Finnish subset of the data. We explore the effectiveness of alternative state-of-the-art techniques to deploy a SER system to a new domain, comparing cross-corpus generalization, WGAN-based domain adaptation, and active learning in the task. As a result, we show that the best-performing models are able to achieve a classification performance of 73.4% unweighted average recall (UAR) and 73.2% UAR for a binary classification for valence and arousal, respectively. The results also show that active learning achieves the most consistent performance compared to the two alternatives.

AlkuperäiskieliEnglanti
Otsikko22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
KustantajaInternational Speech Communication Association
Sivut3380-3384
Sivumäärä5
ISBN (elektroninen)9781713836902
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAnnual Conference of the International Speech Communication Association - Brno, Tshekki
Kesto: 30 elok. 20213 syysk. 2021

Julkaisusarja

NimiProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
Vuosikerta1
ISSN (painettu)2308-457X
ISSN (elektroninen)1990-9772

Conference

ConferenceAnnual Conference of the International Speech Communication Association
Maa/AlueTshekki
KaupunkiBrno
Ajanjakso30/08/213/09/21

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Language and Linguistics
  • Human-Computer Interaction
  • Signal Processing
  • Software
  • Modelling and Simulation

Sormenjälki

Sukella tutkimusaiheisiin 'Automatic analysis of the emotional content of speech in daylong child-centered recordings from a neonatal intensive care unit'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä