Automatic Dense Tissue Segmentation in Digital Mammography Images Based on Fully Convolutional Network and Intensity-Based Clustering

Carlos S. Benitez, Said Pertuz, Otso Arponen, Anna Leena Lääperi, Irina Rinta-Kiikka

    Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

    Abstrakti

    Mammographic breast percent density (PD) is one of the strongest risk factors associated with the development of breast cancer. As a result, the accurate estimation of PD from screening mammograms is an important problem for breast cancer risk assessment. Nevertheless, automatic segmentation of the dense fibroglandular tissue (FGT) is a difficult task due to the complexity of morphological characteristics and heterogeneity of the breast. In this work, we present a hybrid algorithm based on convolutional neural networks (CNN) and intensity-based clustering used for the fully-automated segmentation of dense tissue in mammograms. We utilize a dataset of 582 mammograms with expert reader's manually segmented dense tissue areas as a reference. The PD estimates obtained with the proposed method yield a median PD error of 7.7% with no statistically significant differences with respect to the expert.

    AlkuperäiskieliEnglanti
    Otsikko2022 IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2022 - Proceedings
    ToimittajatAlvaro David Orjuela-Canon
    KustantajaIEEE
    Sivumäärä4
    ISBN (elektroninen)978-1-6654-7470-2
    DOI - pysyväislinkit
    TilaJulkaistu - 2022
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaIEEE Colombian Conference on Applications of Computational Intelligence - Cali, Kolumbia
    Kesto: 27 heinäk. 202229 heinäk. 2022
    Konferenssinumero: 2022

    Julkaisusarja

    NimiIEEE Colombian Conference on Applications of Computational Intelligence
    Vuosikerta2022

    Conference

    ConferenceIEEE Colombian Conference on Applications of Computational Intelligence
    LyhennettäColCACI
    Maa/AlueKolumbia
    KaupunkiCali
    Ajanjakso27/07/2229/07/22

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Artificial Intelligence
    • Computer Science Applications
    • Computer Vision and Pattern Recognition
    • Control and Optimization

    Sormenjälki

    Sukella tutkimusaiheisiin 'Automatic Dense Tissue Segmentation in Digital Mammography Images Based on Fully Convolutional Network and Intensity-Based Clustering'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä