Abstrakti
Mammographic breast percent density (PD) is one of the strongest risk factors associated with the development of breast cancer. As a result, the accurate estimation of PD from screening mammograms is an important problem for breast cancer risk assessment. Nevertheless, automatic segmentation of the dense fibroglandular tissue (FGT) is a difficult task due to the complexity of morphological characteristics and heterogeneity of the breast. In this work, we present a hybrid algorithm based on convolutional neural networks (CNN) and intensity-based clustering used for the fully-automated segmentation of dense tissue in mammograms. We utilize a dataset of 582 mammograms with expert reader's manually segmented dense tissue areas as a reference. The PD estimates obtained with the proposed method yield a median PD error of 7.7% with no statistically significant differences with respect to the expert.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2022 IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2022 - Proceedings |
Toimittajat | Alvaro David Orjuela-Canon |
Kustantaja | IEEE |
Sivumäärä | 4 |
ISBN (elektroninen) | 978-1-6654-7470-2 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE Colombian Conference on Applications of Computational Intelligence - Cali, Kolumbia Kesto: 27 heinäk. 2022 → 29 heinäk. 2022 Konferenssinumero: 2022 |
Julkaisusarja
Nimi | IEEE Colombian Conference on Applications of Computational Intelligence |
---|---|
Vuosikerta | 2022 |
Conference
Conference | IEEE Colombian Conference on Applications of Computational Intelligence |
---|---|
Lyhennettä | ColCACI |
Maa/Alue | Kolumbia |
Kaupunki | Cali |
Ajanjakso | 27/07/22 → 29/07/22 |
Julkaisufoorumi-taso
- Jufo-taso 1
!!ASJC Scopus subject areas
- Artificial Intelligence
- Computer Science Applications
- Computer Vision and Pattern Recognition
- Control and Optimization