Automatic Robot Path Planning for Visual Inspection from Object Shape

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Visual inspection is a crucial yet time-consuming task across various industries. Numerous established methods employ machine learning in inspection tasks, necessitating specific training data that includes predefined inspection poses and training images essential for the training of models. The acquisition of such data and their integration into an inspection framework is challenging due to the variety in objects and scenes involved and due to additional bottlenecks caused by the manual collection of training data by humans, thereby hindering the automation of visual inspection across diverse domains. This work proposes a solution for automatic path planning using a single depth camera mounted on a robot manipulator. Point clouds obtained from the depth images are processed and filtered to extract object profiles and transformed to inspection target paths for the robot end-effector. The approach relies on the geometry of the object and generates an inspection path that follows the shape normal to the surface. Depending on the object size and shape, inspection paths can be defined as single or multi-path plans. Results are demonstrated in both simulated and real-world environments, yielding promising inspection paths for objects with varying sizes and shapes. Code and video are open-source available at: https://github.com/CuriousLad1000/Auto-Path-Planner
AlkuperäiskieliEnglanti
Otsikko2024 IEEE 20th International Conference on Automation Science and Engineering (CASE)
KustantajaIEEE
Sivut173-180
ISBN (elektroninen)9798350358513
ISBN (painettu)9798350358520
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Automation Science and Engineering - Bari, Italia
Kesto: 28 elok. 20241 syysk. 2024

Julkaisusarja

NimiIEEE International Conference on Automation Science and Engineering
ISSN (painettu)2161-8070
ISSN (elektroninen)2161-8089

Conference

ConferenceIEEE International Conference on Automation Science and Engineering
Maa/AlueItalia
KaupunkiBari
Ajanjakso28/08/241/09/24

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Automatic Robot Path Planning for Visual Inspection from Object Shape'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä