Automatic tree species recognition with quantitative structure models

Markku Åkerblom, Pasi Raumonen, Raisa Mäkipää, Mikko Kaasalainen

    Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

    98 Sitaatiot (Scopus)
    30 Lataukset (Pure)

    Abstrakti

    We present three robust methods to accurately and automatically recognize tree species from terrestrial laser scanner data. The recognition is based on the use of quantitative structure tree models, which are hierarchical geometric primitive models accurately approximating the branching structure, geometry, and volume of the trees. Fifteen robust tree features are presented and tested with all different combinations for tree species classification. The classification methods presented are k-nearest neighbours, multinomial regression, and support vector machine based approaches. Three mainly single-species forest plots of Silver birch, Scots pine and Norway spruce, and two mixed-species forest plots located in Finland and a total number of trees over 1200 were used for demonstration. The results show that by using single-species forest plots for training and testing, it is possible to find a feature combination between 5 and 15 features, that results in an average classification accuracy above 93% for all the methods. For the preliminary mixed-species forest plot testing, accuracy was lower but the classification approach presented potential to generalize to more diverse cases. Moreover, the results show that the post-processing of terrestrial laser scanning data of multi-hectare forest, from tree extraction and modelling to species classification, can be done automatically.

    AlkuperäiskieliEnglanti
    Sivut1-12
    Sivumäärä12
    JulkaisuRemote Sensing of Environment
    Vuosikerta191
    DOI - pysyväislinkit
    TilaJulkaistu - 15 maalisk. 2017
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 3

    !!ASJC Scopus subject areas

    • Soil Science
    • Geology
    • Computers in Earth Sciences

    Sormenjälki

    Sukella tutkimusaiheisiin 'Automatic tree species recognition with quantitative structure models'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä