Benchmarking Visual Localization for Autonomous Navigation

Lauri Suomela, Jussi Kalliola, Atakan Dag, Harry Edelman, Joni-Kristian Kämäräinen

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

Abstrakti

This work introduces a simulator-based benchmark for visual localization in the autonomous navigation context. The dynamic benchmark enables investigation of how variables such as the time of day, weather, and camera perspective affect the navigation performance of autonomous agents that utilize visual localization for closed-loop control. The experimental part of the paper studies the effects of four such variables by evaluating state-of-the-art visual localization methods as part of the motion planning module of an autonomous navigation stack. The results show major variation in the suitability of the different methods for vision-based navigation. To the authors' best knowledge, the proposed benchmark is the first to study modern visual localization methods as part of a complete navigation stack. We make the benchmark available at https://github.com/lasuomela/carla_vloc_benchmark.

AlkuperäiskieliEnglanti
OtsikkoProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
KustantajaIEEE
Sivut2944-2954
Sivumäärä11
ISBN (elektroninen)978-1-6654-9346-8
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE/CVF Winter Conference on Applications of Computer Vision - Waikoloa, Yhdysvallat
Kesto: 3 tammik. 20237 tammik. 2023

Julkaisusarja

NimiProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
ISSN (elektroninen)2642-9381

Conference

ConferenceIEEE/CVF Winter Conference on Applications of Computer Vision
Maa/AlueYhdysvallat
KaupunkiWaikoloa
Ajanjakso3/01/237/01/23

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Sormenjälki

Sukella tutkimusaiheisiin 'Benchmarking Visual Localization for Autonomous Navigation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä