Beyond Wisdom of Crowds: Deep Uncertainty Coding for Apparent Age Estimation

Yanlin Qian, Ke Chen, Dan Yang, Joni Kämäräinen

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

Abstrakti

Conventional algorithms for apparent age estimation make a strong assumption that the wisdom of crowds (i.e. the mean value of inconsistently annotated age labels) is superior to any individual. In this paper, we go beyond such an assumption and instead of averaging to remove label uncertainty we cope with label uncertainty in training by introducing a new concept of uncertainty coding. Uncertainty coding encodes multiple unary apparent age labels into a binary vector indicating age range (uncertainty) in the target space. We traverse through convolutional features and architecture to learn deep uncertainty mapping, whose predicted codes as mid-level features are fed into the second layer regressor that outputs a target prediction. We conduct experiments on the ChaLearn and FG-NET benchmarks to demonstrate superior performance of the proposed deep uncertainty coding to the state-of-the-arts.
AlkuperäiskieliEnglanti
Otsikko2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC)
KustantajaIEEE
Sivut658-662
Sivumäärä5
ISBN (elektroninen)978-1-7281-2325-7
ISBN (painettu)978-1-7281-2326-4
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Image, Vision and Computing -
Kesto: 1 tammik. 2000 → …

Conference

ConferenceInternational Conference on Image, Vision and Computing
Ajanjakso1/01/00 → …

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Beyond Wisdom of Crowds: Deep Uncertainty Coding for Apparent Age Estimation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä