Blind denoising of dental X-Ray images

Mykola Ponomarenko, Oleksandr Miroshnichenko, Vladimir Lukin, Sergii Kryvenko, Karen Egiazarian

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

Abstrakti

The present study addresses the issue of automatic analysis and noise reduction in dental X-ray images obtained through the Morita system. These images are characterized by spatially correlated noise with an unknown spectrum and varying standard deviation across different regions of the image. To address this issue, we propose the utilization of two deep convolutional neural networks. The first network estimates the spectrum and level of noise for each pixel of a noisy image, predicting maps of noise standard deviation for three different image scales. The second network utilizes these maps as inputs to suppress noise in the image. Results obtained using both modeled and real-life images demonstrate that the proposed networks achieve a peak signal-to-noise ratio (PSNR) for dental X-ray images that is 2.7 dB better than the state-of-the-art denoising methods.

AlkuperäiskieliEnglanti
OtsikkoIS&T International Symposium on Electronic Imaging 2023
AlaotsikkoImage Processing: Algorithms and Systems XXI
KustantajaSociety for Imaging Science and Technology
Sivut299-1 - 299-6
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Symposium on Electronic Imaging - San Francisco, Yhdysvallat
Kesto: 15 tammik. 202319 tammik. 2023

Julkaisusarja

NimiIS&T International Symposium on Electronic Imaging
Numero9
Vuosikerta35
ISSN (elektroninen)2470-1173

Conference

ConferenceInternational Symposium on Electronic Imaging
Maa/AlueYhdysvallat
KaupunkiSan Francisco
Ajanjakso15/01/2319/01/23

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Human-Computer Interaction
  • Software
  • Electrical and Electronic Engineering
  • Atomic and Molecular Physics, and Optics

Sormenjälki

Sukella tutkimusaiheisiin 'Blind denoising of dental X-Ray images'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä