Blind Faith: Privacy-Preserving Machine Learning using Function Approximation

Tanveer Khan, Alexandros Bakas, Antonis Michalas

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

6 Sitaatiot (Scopus)
7 Lataukset (Pure)

Abstrakti

Over the past few years, a tremendous growth of machine learning was brought about by a significant increase in adoption of cloud-based services. As a result, various solutions have been proposed in which the machine learning models run on a remote cloud provider. However, when such a model is deployed on an untrusted cloud, it is of vital importance that the users' privacy is preserved. To this end, we propose Blind Faith - a machine learning model in which the training phase occurs in plaintext data, but the classification of the users' inputs is performed on homomorphically encrypted ciphertexts. To make our construction compatible with homomorphic encryption, we approximate the activation functions using Chebyshev polynomials. This allowed us to build a privacy-preserving machine learning model that can classify encrypted images. Blind Faith preserves users' privacy since it can perform high accuracy predictions by performing computations directly on encrypted data.
AlkuperäiskieliEnglanti
Otsikko2021 IEEE Symposium on Computers and Communications (ISCC)
KustantajaIEEE
Sivut1-7
Sivumäärä7
ISBN (elektroninen)978-1-6654-2744-9
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
Tapahtuma IEEE Symposium on Computers and Communications - , Kreikka
Kesto: 5 syysk. 20218 syysk. 2021

Julkaisusarja

NimiProceedings : IEEE Symposium on Computers and Communications
ISSN (painettu)1530-1346
ISSN (elektroninen)2642-7389

Conference

Conference IEEE Symposium on Computers and Communications
Maa/AlueKreikka
Ajanjakso5/09/218/09/21

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Blind Faith: Privacy-Preserving Machine Learning using Function Approximation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä