Abstrakti
Hyperspectral (HS) imaging retrieves information from data obtained across a wide spectral range of spectral channels. The object to reconstruct is a 3D cube, where two coordinates are spatial and third one is spectral. We assume that this cube is complex-valued, i.e. characterized spatially frequency varying amplitude and phase. The observations are squared magnitudes measured as intensities summarized over spectrum. The HS phase retrieval problem is formulated as a reconstruction of the HS complex-valued object cube from Gaussian noisy intensity observations. The derived iterative algorithm includes the original proximal spectral analysis operator and the sparsity modeling for complex-valued 3D cubes. The efficiency of the algorithm is confirmed by simulation tests.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2020 IEEE International Conference on Image Processing (ICIP) |
Kustantaja | IEEE |
Sivut | 3154-3158 |
Sivumäärä | 5 |
ISBN (elektroninen) | 978-1-7281-6395-6 |
DOI - pysyväislinkit | |
Tila | Julkaistu - syysk. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Image Processing - United Arab Emirates, Abu Dhabi, Yhdistyneet arabiemiirikunnat Kesto: 25 lokak. 2020 → 28 lokak. 2020 https://2020.ieeeicip.org |
Julkaisusarja
Nimi | Proceedings - International Conference on Image Processing, ICIP |
---|---|
Vuosikerta | 2020-October |
ISSN (painettu) | 1522-4880 |
Conference
Conference | IEEE International Conference on Image Processing |
---|---|
Lyhennettä | ICIP 2020 |
Maa/Alue | Yhdistyneet arabiemiirikunnat |
Kaupunki | Abu Dhabi |
Ajanjakso | 25/10/20 → 28/10/20 |
www-osoite |
Julkaisufoorumi-taso
- Jufo-taso 1