CFD modelling of an indirectly heated calciner reactor, utilized for CO2 capture, in an Eulerian framework

Georgios Kanellis, Myrto Zeneli, Nikolaos Nikolopoulos, Carina Hofmann, Jochen Ströhle, Sotirios Karellas, Jukka Konttinen

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

7 Sitaatiot (Scopus)
21 Lataukset (Pure)

Abstrakti

This study focuses for the first time on the transient three-dimensional CFD simulation of the novel bubbling-bed calciner of an indirectly heated calcium looping pilot plant. The granular flow in the calciner is modelled according to the state-of-the-art Eulerian–Eulerian (Two Fluid Model — TFM) approach. To take into account flow heterogeneity aspects, the drag coefficient is modelled applying the sub-grid energy-minimization multiscale (EMMS) scheme, customized for the specific operating conditions. For the calcination kinetics a changing grain size model (CGSM) from Labiano et al. is used. An important advancement of the current approach lies on the consideration of all the related heat transfer mechanisms from the heat pipes towards the bubbling bed, i.e., both convection and radiation are considered. The simulation results are verified against data measurements obtained from an experimental campaign performed at Technische Universität Darmstadt. The CFD model provides an accurate pressure profile along the calciner height, having a maximum difference of 15 mbar (12% of the total experimental pressure drop) with the experiments. In addition, the CO2 mass fraction at the outlet is successfully predicted with an error of only 3%. Concerning the heat flux, a mesh independent solution with computationally affordable grid size was not possible due to the thin thermal boundary layer, which has also been reported in all relevant research. Nevertheless, the provided solution was found to be almost mesh independent hydrodynamically. For this reason, an estimation of the heat transfer coefficient of the heat pipe heat exchanger was made by using several 0-D mechanistic models, which take as input hydrodynamic data obtained from CFD. As a follow-up, the CFD model combined with the empirical heat transfer correlations is indicatively used to parametrically investigate the effect of fluidization velocity on the heat transfer coefficient of the heat pipe heat exchanger. Through this study, this paper sheds important light on the effect of hydrodynamics on the radiative and convective components of heat transfer. It is shown that a 20% change in fluidization velocity will mildly (¡2%) affect the total heat flux, due to its counterbalancing effect on the radiative and convective components.

AlkuperäiskieliEnglanti
Artikkeli128251
JulkaisuFuel
Vuosikerta346
DOI - pysyväislinkit
TilaJulkaistu - 15 elok. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Rahoitus

This study has been carried out in the framework of the ANICA project-ACT program (Accelerating CCS Technologies, Horizon2020 Project No 691712). This has been funded through the ACT programme (Accelerating CCS Technologies, Horizon 2020 Project No 691712). Financial contributions made form the German Federal Ministry of Economic Affairs and Energy (grant number 03EE5025A ) and the Greek General Secretariat for Research and Technology , are gratefully acknowledged.

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Yleinen kemian tekniikka
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Organic Chemistry

Sormenjälki

Sukella tutkimusaiheisiin 'CFD modelling of an indirectly heated calciner reactor, utilized for CO2 capture, in an Eulerian framework'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä