Class-Incremental Learning for Multi-Label Audio Classification

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

In this paper, we propose a method for class-incremental learning of potentially overlapping sounds for solving a sequence of multi-label audio classification tasks. We design an incremental learner that learns new classes independently of the old classes. To preserve knowledge about the old classes, we propose a cosine similarity-based distillation loss that minimizes discrepancy in the feature representations of subsequent learners, and use it along with a Kullback-Leibler divergence-based distillation loss that minimizes discrepancy in their respective outputs. Experiments are performed on a dataset with 50 sound classes, with an initial classification task containing 30 base classes and 4 incremental phases of 5 classes each. After each phase, the system is tested for multi-label classification with the entire set of classes learned so far. The proposed method obtains an average F1-score of 40.9% over the five phases, ranging from 45.2% in phase 0 on 30 classes, to 36.3% in phase 4 on 50 classes. Average performance degradation over incremental phases is only 0.7 percentage points from the initial F1-score of 45.2%.

AlkuperäiskieliEnglanti
Otsikko2024 IEEE International Conference on Acoustics, Speech, and Signal Processing
AlaotsikkoProceedings
KustantajaIEEE
Sivut916-920
Sivumäärä5
ISBN (elektroninen)9798350344851
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Seoul, Etelä-Korea
Kesto: 14 huhtik. 202419 huhtik. 2024

Julkaisusarja

NimiProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (painettu)1520-6149

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
Maa/AlueEtelä-Korea
KaupunkiSeoul
Ajanjakso14/04/2419/04/24

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'Class-Incremental Learning for Multi-Label Audio Classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä