Class-specific nonlinear subspace learning based on optimized class representation

Alexandros Iosifidis, Anastasios Tefas, Ioannis Pitas

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    Abstrakti

    In this paper, a new nonlinear subspace learning technique for class-specific data representation based on an optimized class representation is described. An iterative optimization scheme is formulated where both the optimal nonlinear data projection and the optimal class representation are determined at each optimization step. This approach is tested on human face and action recognition problems, where its performance is compared with that of the standard class-specific subspace learning approach, as well as other nonlinear discriminant subspace learning techniques. Experimental results denote the effectiveness of this new approach, since it consistently outperforms the standard one and outperforms other nonlinear discriminant subspace learning techniques in most cases.
    AlkuperäiskieliEnglanti
    Otsikko2015 23rd European Signal Processing Conference (EUSIPCO)
    Sivut2491 - 2495
    DOI - pysyväislinkit
    TilaJulkaistu - 2015
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa

    Sormenjälki

    Sukella tutkimusaiheisiin 'Class-specific nonlinear subspace learning based on optimized class representation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä