Classification of iPSC Colony Images Using Hierarchical Strategies with Support Vector Machines

Henry Joutsijoki, Jorge Avalos-Salguero, Kati Iltanen, Jorma Laurikkala, Kirsi Penttinen, Jari Hyttinen, Katriina Aalto-Setälä, Martti Juhola, Jyrki Rasku, Markus Haponen, Ivan Baldin, Yulia Gizatdinova, Michelangelo Paci, Jyri Saarikoski, Kirsi Varpa, Harri Siirtola

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

8 Sitaatiot (Scopus)

Abstrakti

In this preliminary research we examine the suitability of hierarchical strategies of multi-class support vector machines for classification of induced pluripotent stem cell (iPSC) colony images. The iPSC technology gives incredible possibilities for safe and patient specific drug therapy without any ethical problems. However, growing of iPSCs is a sensitive process and abnormalities may occur during the growing process. These abnormalities need to be recognized and the problem returns to image classification. We have a collection of 80 iPSC colony images where each one of the images is prelabeled by an expert to class bad, good or semigood. We use intensity histograms as features for classification and we evaluate histograms from the whole image and the colony area only having two datasets. We perform two feature reduction procedures for both datasets. In classification we examine how different hierarchical constructions effect the classification. We perform thorough evaluation and the best accuracy was around 54% obtained with the linear kernel function. Between different hierarchical structures, in many cases there are no significant changes in results. As a result, intensity histograms are a good baseline for the classification of iPSC colony images but more sophisticated feature extraction and reduction methods together with other classification methods need to be researched in future.

AlkuperäiskieliEnglanti
OtsikkoProceedings of 2014 IEEE SSCI 2014 - Symposium on Computational Intelligence and Data Mining - CIDM 2014
KustantajaIEEE
Sivut86-92
Sivumäärä7
ISBN (painettu)978-1-4799-4519-1
DOI - pysyväislinkit
TilaJulkaistu - 2015
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Symposium on Computational Intelligence and Data Mining -
Kesto: 1 tammik. 2014 → …

Conference

ConferenceIEEE Symposium on Computational Intelligence and Data Mining
Ajanjakso1/01/14 → …

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Artificial Intelligence
  • Information Systems
  • Signal Processing
  • Software

Sormenjälki

Sukella tutkimusaiheisiin 'Classification of iPSC Colony Images Using Hierarchical Strategies with Support Vector Machines'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • iPS-solut

    Aalto-Setälä, K. (Manager)

    Laitteistot/tilat: Facility

Siteeraa tätä