Abstrakti
We present a binary graph classifier (BGC) which allows to classify large, unweighted, undirected graphs. This classifier is based on a local decomposition of the graph for each node in generalized trees. The obtained trees, forming the tree set of the graph, are then pairwise compared by a generalized tree-similarity-algorithm (GTSA) and the resulting similarity scores determine a characteristic similarity distribution of the graph. Classification in this context is defined as mutual consistency for all pure and mixed tree sets and their resulting similarity distributions in a graph class. We demonstrate the application of this method to an artificially generated data set and for data from microarray experiments of cervical cancer.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 2005 International Conference on Data Mining, DMIN'05 |
Sivut | 200-207 |
Sivumäärä | 8 |
Tila | Julkaistu - 2005 |
Julkaistu ulkoisesti | Kyllä |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | 2005 International Conference on Data Mining, DMIN'05 - Las Vegas, NV, Yhdysvallat Kesto: 20 kesäk. 2005 → 23 kesäk. 2005 |
Conference
Conference | 2005 International Conference on Data Mining, DMIN'05 |
---|---|
Maa/Alue | Yhdysvallat |
Kaupunki | Las Vegas, NV |
Ajanjakso | 20/06/05 → 23/06/05 |
!!ASJC Scopus subject areas
- Computer Science Applications
- Software