Classification of large graphs by a local tree decomposition

Frank Emmert-Streib, Matthias Dehmert, Jürgen Kilian

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

26 Sitaatiot (Scopus)

Abstrakti

We present a binary graph classifier (BGC) which allows to classify large, unweighted, undirected graphs. This classifier is based on a local decomposition of the graph for each node in generalized trees. The obtained trees, forming the tree set of the graph, are then pairwise compared by a generalized tree-similarity-algorithm (GTSA) and the resulting similarity scores determine a characteristic similarity distribution of the graph. Classification in this context is defined as mutual consistency for all pure and mixed tree sets and their resulting similarity distributions in a graph class. We demonstrate the application of this method to an artificially generated data set and for data from microarray experiments of cervical cancer.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2005 International Conference on Data Mining, DMIN'05
Sivut200-207
Sivumäärä8
TilaJulkaistu - 2005
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
Tapahtuma2005 International Conference on Data Mining, DMIN'05 - Las Vegas, NV, Yhdysvallat
Kesto: 20 kesäk. 200523 kesäk. 2005

Conference

Conference2005 International Conference on Data Mining, DMIN'05
Maa/AlueYhdysvallat
KaupunkiLas Vegas, NV
Ajanjakso20/06/0523/06/05

!!ASJC Scopus subject areas

  • Computer Science Applications
  • Software

Sormenjälki

Sukella tutkimusaiheisiin 'Classification of large graphs by a local tree decomposition'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä