Classification of Masonry Bricks using Convolutional Neural Networks: a Case Study in a University-Industry Collaboration Project

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

32 Lataukset (Pure)

Abstrakti

This paper presents a case study – developing a computer-based classification framework to classify masonry
bricks into three quality categories – carried out as a part of the Robocoast R&D Center project. The project aims at better
collaboration between universities and industry by establishing an innovation platform where companies can bring their challenges
to be addressed together with university experts. The project also promotes collaboration between universities being a part of the
RoboAI Competence Centre – a joint research and innovation platform of Satakunta University of Applied Sciences (SAMK)
and Tampere University, Pori unit. Automatic classification of bricks is important as it is foreseen that a robotic arm, powered by
an automatic classifier, could replace the heavy and tedious work currently performed by humans in brick factories. A
convolutional neural network-based solution, using a pretrained VGG-16 deep learning architecture, is proposed. Overall accuracy
of 88 % was obtained when considering all three quality classes.When only discarding class 3 bricks, i.e., those that are not suitable
for any construction work, the accuracy was 93 %.
AlkuperäiskieliEnglanti
Otsikko2021 IEEE International Conference on Progress in Informatics and Computing (PIC)
KustantajaIEEE
Sivut125-129
Sivumäärä5
ISBN (elektroninen)978-1-6654-2655-8, 978-1-6654-2654-1
DOI - pysyväislinkit
TilaJulkaistu - 19 jouluk. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Progress in Informatics and Computing - Online
Kesto: 17 jouluk. 202119 jouluk. 2021
http://www.picconf.com/

Conference

ConferenceIEEE International Conference on Progress in Informatics and Computing
LyhennettäPIC-2021
Ajanjakso17/12/2119/12/21
www-osoite

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Classification of Masonry Bricks using Convolutional Neural Networks: a Case Study in a University-Industry Collaboration Project'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä