Color Constancy Model Optimization with Small Dataset via Pruning of CNN Filters

Sahar Husseini, Pouria Babahajiani, Moncef Gabbouj

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

Abstrakti

Color constancy is an essential part of the Image Signal Processor (ISP) pipeline, which removes the color bias of the captured image generated by scene illumination. Recently, several supervised algorithms, including Convolutional Neural Networks (CNN)-based methods, have been proved to work correctly on this problem. It is time-consuming and costly to collect many raw images of various scenes with different lighting conditions and measure corresponding illumination values. To reduce the dependence on a large scale labeled dataset and take advantage of standard CNNs architectures, we proposed an approach to create an efficient color constancy algorithm. Firstly, we utilized a structure channel pruning method to thin our baseline model. We iteratively pruned 75% channels of a specific Mobilenet version used as our model's backbone, trained on a large-scale classification dataset. It means the backbone with the classification head is used to deal with our network pruning task. Then the resulted compact model was transferred and trained on a small dataset doing color constancy. During training on the color constancy task, we applied the DSD technique. The proposed method reaches comparative performance with other state-of-The-Art models, produces fewer MACs, and can significantly decrease computational costs.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2021 9th European Workshop on Visual Information Processing, EUVIP 2021
ToimittajatA. Beghdadi, F. Alaya Cheikh, J.M.R.S. Tavares, A. Mokraoui, G. Valenzise, L. Oudre, M.A. Qureshi
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)9781665432306
ISBN (painettu)9781665432313
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Workshop on Visual Information Processing - Paris, Ranska
Kesto: 23 kesäk. 202125 kesäk. 2021

Julkaisusarja

NimiEuropean Workshop on Visual Information Processing
ISSN (painettu)2164-974X
ISSN (elektroninen)2471-8963

Conference

ConferenceEuropean Workshop on Visual Information Processing
Maa/AlueRanska
KaupunkiParis
Ajanjakso23/06/2125/06/21

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Information Systems
  • Signal Processing

Sormenjälki

Sukella tutkimusaiheisiin 'Color Constancy Model Optimization with Small Dataset via Pruning of CNN Filters'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä