Community detection in directed networks based on network embeddings

Guihai Yu, Yang Jiao, Matthias Dehmer, Frank Emmert-Streib

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

5 Lataukset (Pure)

Abstrakti

In real-world scenarios, many systems can be represented using directed networks. Community detection is a foundational task in the study of complex networks, providing a method for researching and understanding the topological structure, physical significance, and functional behavior of networks. By utilizing network embedding techniques, we can effectively convert network structure and additional information into node vector representations while preserving the original network structure and properties, solving the problem of insufficient network representations. Compared with undirected networks, directed networks are more complex. When conducting community detection on directed networks, the biggest challenge is how to combine the directional and asymmetric characteristics of edges. This article combines network embedding with community detection, utilizing the cosine similarity between node embedding vectors, and combining the ComDBNSQ algorithm to achieve non overlapping community partitioning of directed networks. To evaluate the effectiveness of the algorithm, we conduct experiments using both artificial and real data sets. The numerical results indicate that the algorithm outperforms the comparison algorithms (Girvan–Newman algorithm and Label Propagation algorithm) in terms of modularity, and can perform high-quality directed network community detection.

AlkuperäiskieliEnglanti
Artikkeli115630
JulkaisuChaos, Solitons and Fractals
Vuosikerta189
Varhainen verkossa julkaisun päivämäärä2024
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Rahoitus

Guihai Yu and Yang Jiao were supported by National Natural Science Foundation of China (11861019, 62363004, 12461062), Natural Science Foundation of Guizhou ([2019]1047, [2020]1Z001, [2021]5609), Guangxi Key Laboratory of Big Data in Finance and Economics (FEDOP2022A01).

RahoittajatRahoittajan numero
National Natural Science Foundation of China12461062, 62363004, 11861019
Natural Science Foundation of Guizhou Province[2019]1047, [2021]5609, 1Z001
Guangxi Key Laboratory of Big Data in Finance and EconomicsFEDOP2022A01

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Statistical and Nonlinear Physics
    • Mathematical Physics
    • Yleinen fysiikka ja tähtitiede
    • Applied Mathematics

    Sormenjälki

    Sukella tutkimusaiheisiin 'Community detection in directed networks based on network embeddings'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä