Abstrakti
Predicting Technical Debt has become a popular research niche in recent software engineering literature. However, there is no consistent approach yet that succeeds in entirely capturing the nature of this type of data. We applied each technique on a dataset consisting of the commit data of a total of 28 Java projects. We predicted the future values of the SQALE index to evaluate their predictive performance. Using these techniques we confirmed the predictive power of each of them with the same commit data. We aim to investigate further the time-dependent nature of other types of commit data to validate the existing prediction techniques.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 7th ACM/IEEE International Conference on Technical Debt (TechDebt '24) |
Kustantaja | ACM |
Sivut | 45-46 |
Sivumäärä | 2 |
ISBN (elektroninen) | 979-8-4007-0590-8 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | ACM/IEEE International Conference on Technical Debt - Lisbon, Portugali Kesto: 14 huhtik. 2024 → 15 huhtik. 2024 |
Conference
Conference | ACM/IEEE International Conference on Technical Debt |
---|---|
Maa/Alue | Portugali |
Kaupunki | Lisbon |
Ajanjakso | 14/04/24 → 15/04/24 |
Julkaisufoorumi-taso
- Jufo-taso 1
!!ASJC Scopus subject areas
- Safety, Risk, Reliability and Quality
- Management of Technology and Innovation
- Hardware and Architecture
- Software