Comparing Multivariate Time Series Analysis and Machine Learning Performance for Technical Debt Prediction: The SQALE Index Case

Mikel Robredo, Nyyti Saarimäki, Rafael Peñaloza, Davide Taibi, Valentina Lenarduzzi

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

2 Lataukset (Pure)

Abstrakti

Predicting Technical Debt has become a popular research niche in recent software engineering literature. However, there is no consistent approach yet that succeeds in entirely capturing the nature of this type of data. We applied each technique on a dataset consisting of the commit data of a total of 28 Java projects. We predicted the future values of the SQALE index to evaluate their predictive performance. Using these techniques we confirmed the predictive power of each of them with the same commit data. We aim to investigate further the time-dependent nature of other types of commit data to validate the existing prediction techniques.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the 7th ACM/IEEE International Conference on Technical Debt (TechDebt '24)
KustantajaACM
Sivut45-46
Sivumäärä2
ISBN (elektroninen)979-8-4007-0590-8
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaACM/IEEE International Conference on Technical Debt - Lisbon, Portugali
Kesto: 14 huhtik. 202415 huhtik. 2024

Conference

ConferenceACM/IEEE International Conference on Technical Debt
Maa/AluePortugali
KaupunkiLisbon
Ajanjakso14/04/2415/04/24

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality
  • Management of Technology and Innovation
  • Hardware and Architecture
  • Software

Sormenjälki

Sukella tutkimusaiheisiin 'Comparing Multivariate Time Series Analysis and Machine Learning Performance for Technical Debt Prediction: The SQALE Index Case'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä