Complexity data science: A spin-off from digital twins

Frank Emmert-Streib, Hocine Cherifi, Kimmo Kaski, Stuart Kauffman, Olli Yli-Harja

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

5 Lataukset (Pure)

Abstrakti

Digital twins offer a new and exciting framework that has recently attracted significant interest in fields such as oncology, immunology, and cardiology. The basic idea of a digital twin is to combine simulation and learning to create a virtual model of a physical object. In this paper, we explore how the concept of digital twins can be generalized into a broader, overarching field. From a theoretical standpoint, this generalization is achieved by recognizing that the duality of a digital twin fundamentally connects complexity science with data science, leading to the emergence of complexity data science as a synthesis of the two. We examine the broader implications of this field, including its historical roots, challenges, and opportunities.

AlkuperäiskieliEnglanti
Artikkelipgae456
Sivumäärä7
JulkaisuPNAS Nexus
Vuosikerta3
Numero11
DOI - pysyväislinkit
TilaJulkaistu - marrask. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • General

Sormenjälki

Sukella tutkimusaiheisiin 'Complexity data science: A spin-off from digital twins'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä