Abstrakti
Inclusion logic differs from many other logics of dependence and independence in that it can only describe polynomial-time properties. In this article we examine more closely connections between syntactic fragments of inclusion logic and different complexity classes. Our focus is on two computational problems: maximal subteam membership and the model checking problem for a fixed inclusion logic formula. We show that very simple quantifier-free formulae with one or two inclusion atoms generate instances of these problems that are complete for (non-deterministic) logarithmic space and polynomial time. We also present a safety game for the maximal subteam membership problem and use it to investigate this problem over teams in which one variable is a key. Furthermore, we relate our findings to consistent query answering over inclusion dependencies, and present a fragment of inclusion logic that captures non-deterministic logarithmic space in ordered models.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 104759 |
Julkaisu | Information and Computation |
Vuosikerta | 287 |
Varhainen verkossa julkaisun päivämäärä | 5 toukok. 2021 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2022 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Julkaisufoorumi-taso
- Jufo-taso 2
!!ASJC Scopus subject areas
- Theoretical Computer Science
- Information Systems
- Computer Science Applications
- Computational Theory and Mathematics