Contribution of traffic-originated nanoparticle emissions to regional and local aerosol levels

Miska Olin, David Patoulias, Heino Kuuluvainen, Jarkko V. Niemi, Topi Rönkkö, Spyros N. Pandis, Ilona Riipinen, Miikka Dal Maso

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

3 Lataukset (Pure)


Sub-50 nm particles originating from traffic emissions pose risks to human health due to their high lung deposition efficiency and potentially harmful chemical composition. We present a modeling study using an updated European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) number emission inventory, incorporating a more realistic, empirically justified particle size distribution (PSD) for sub-50 nm particles from road traffic as compared with the previous version. We present experimental PSDs and CO2 concentrations, measured in a highly trafficked street canyon in Helsinki, Finland, as an emission factor particle size distribution (EFPSD), which was then used in updating the EUCAARI inventory. We applied the updated inventory in a simulation using the regional chemical transport model PMCAMx-UF over Europe for May 2008. This was done to test the effect of updated emissions at regional and local scales, particularly in comparison with atmospheric new particle formation (NPF). Updating the inventory increased the simulated average total particle number concentrations by only 1 %, although the total particle number emissions were increased to a 3-fold level. The concentrations increased up to 11 % when only 1.3-3 nm sized particles (nanocluster aerosol, NCA) were considered. These values indicate that the effect of updating overall is insignificant at a regional scale during this photochemically active period. During this period, the fraction of the total particle number originating from atmospheric NPF processes was 91 %; thus, these simulations give a lower limit for the contribution of traffic to the aerosol levels. Nevertheless, the situation is different when examining the effect of the update closer spatially or temporally or when focusing on the chemical composition or the origin of the particles. For example, the daily average NCA concentrations increased by a factor of several hundred or thousand in some locations on certain days. Overall, the most significant effects - reaching several orders of magnitude - from updating the inventory are observed when examining specific particle sizes (especially 7-20 nm), particle components, and specific urban areas. While the model still has a tendency to predict more sub-50 nm particles compared to the observations, the most notable underestimations in the concentrations of sub-10 nm particles are now overcome. Additionally, the simulated distributions now agree better with the data observed at locations with high traffic densities. The findings of this study highlight the need to consider emissions, PSDs, and composition of sub-50 nm particles from road traffic in studies focusing on urban air quality. Updating this emission source brings the simulated aerosol levels, particularly in urban locations, closer to observations, which highlights its importance for calculations of human exposure to nanoparticles.

JulkaisuAtmospheric Chemistry and Physics
DOI - pysyväislinkit
TilaJulkaistu - 24 tammik. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


  • Jufo-taso 3

!!ASJC Scopus subject areas

  • Atmospheric Science


Sukella tutkimusaiheisiin 'Contribution of traffic-originated nanoparticle emissions to regional and local aerosol levels'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä