Convolutional low-resolution fine-grained classification

    Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

    56 Sitaatiot (Scopus)

    Abstrakti

    Successful fine-grained image classification methods learn subtle details between visually similar (sub-)classes, but the problem becomes significantly more challenging if the details are missing due to low resolution. Encouraged by the recent success of Convolutional Neural Network (CNN) architectures in image classification, we propose a novel resolution-aware deep model which combines convolutional image super-resolution and convolutional fine-grained classification into a single model in an end-to-end manner. Extensive experiments on multiple benchmarks demonstrate that the proposed model consistently performs better than conventional convolutional networks on classifying fine-grained object classes in low-resolution images.

    AlkuperäiskieliEnglanti
    Sivut166-171
    JulkaisuPattern Recognition Letters
    Vuosikerta119
    Varhainen verkossa julkaisun päivämäärä2017
    DOI - pysyväislinkit
    TilaJulkaistu - maalisk. 2019
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 2

    !!ASJC Scopus subject areas

    • Software
    • Signal Processing
    • Computer Vision and Pattern Recognition
    • Artificial Intelligence

    Sormenjälki

    Sukella tutkimusaiheisiin 'Convolutional low-resolution fine-grained classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä