Corrosion Properties of Thermally Sprayed Bond Coatings Under Plasma-Sprayed Chromia Coating in Sulfuric Acid Solutions

Giovanni Bolelli, Damiano Meschini, Tommi Varis, Veronica Testa, Stefania Morelli, Luca Lusvarghi, Petri Vuoristo

Tutkimustuotos: ArticleScientificvertaisarvioitu

Abstrakti

Plasma-sprayed chromia coatings are known to have excellent corrosion and wear properties in highly acidic conditions at ambient and elevated temperatures, but are not watertight due to their intrinsic porosity. Therefore, in applications involving aggressive environments, the whole component is usually made of a corrosion-resistant alloy, to which the Cr2O3 coating imparts the necessary wear resistance. However, in such aggressive environments, the survival of thermal spray metallic bond layers becomes an issue. The present study deals with the performance in sulfuric acid solutions of coated systems consisting of a Hastelloy C-276 substrate and a plasma-sprayed Cr2O3 top coating with four different intermediate bond coatings. The bond coatings were HVOF-sprayed Ni-20Cr, Hastelloy C-276 and Ultimet alloys and plasma-sprayed tantalum. Open-circuit measurement, electrochemical polarization and electrochemical impedance spectroscopy tests were carried out at room temperature (RT) in solutions with various concentrations. Also, static immersion tests were performed at RT and 60 °C. The results revealed that the HVOF-sprayed Ni-20Cr and Ultimet alloy coatings were significantly attacked by the sulfuric acid electrolyte, especially at 60 °C, whereas the HVOF-sprayed Hastelloy C-276 and plasma-sprayed Ta coatings performed significantly better.
AlkuperäiskieliEnglanti
Sivut270–284
Sivumäärä15
JulkaisuJournal of Thermal Spray Technology
Vuosikerta29
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Corrosion Properties of Thermally Sprayed Bond Coatings Under Plasma-Sprayed Chromia Coating in Sulfuric Acid Solutions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä