Cyberbullying Detection with Fairness Constraints

Oguzhan Gencoglu

    Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

    29 Sitaatiot (Scopus)

    Abstrakti

    Cyberbullying is a widespread adverse phenomenon among online social interactions in today's digital society. While numerous computational studies focus on enhancing the cyberbullying detection performance of machine learning algorithms, proposed models tend to carry and reinforce unintended social biases. In this study, we try to answer the research question of "Can we mitigate the unintended bias of cyberbullying detection models by guiding the model training with fairness constraints?". For this purpose, we propose a model training scheme that can employ fairness constraints and validate our approach with different datasets. We demonstrate that various types of unintended biases can be successfully mitigated without impairing the model quality. We believe our work contributes to the pursuit of unbiased, transparent, and ethical machine learning solutions for cyber-social health.

    AlkuperäiskieliEnglanti
    Sivut20-29
    JulkaisuIEEE Internet Computing
    Vuosikerta25
    Numero1
    Varhainen verkossa julkaisun päivämäärä2020
    DOI - pysyväislinkit
    TilaJulkaistu - 2020
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 3

    !!ASJC Scopus subject areas

    • Computer Networks and Communications

    Sormenjälki

    Sukella tutkimusaiheisiin 'Cyberbullying Detection with Fairness Constraints'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä