Cycle Count Estimation of VLIW Processors Using Machine Learning

Kari Hepola, Jatan Shrestha, Joonas Multanen, Vivienne Wang, Joni Pajarinen, Pekka Jääskeläinen

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Fast evaluation is important for processor design space exploration in order to increase the probability of encountering the optimal design in the vast space of configurations. Previous work has focused on estimation of dynamic multi-issue processors, which does not consider the effects of a varying instruction-set on the estimation through heuristic compilation. This paper presents a cycle count estimation method for application-specific static multi-issue processors with customizable datapaths via machine learning techniques that can estimate cycle counts for any architecture configuration after the initial profiling of the program. Among the estimated models, the residual neural network model achieves the lowest mean relative error of 4.7% while being orders of magnitude faster than running the recompilation and simulation steps.
AlkuperäiskieliEnglanti
Otsikko2024 IEEE Nordic Circuits and Systems Conference (NorCAS)
KustantajaIEEE
ISBN (elektroninen)979-8-3315-1766-3
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Nordic Circuits and Systems Conference - Lund, Ruotsi
Kesto: 29 lokak. 202430 lokak. 2024

Conference

ConferenceIEEE Nordic Circuits and Systems Conference
Maa/AlueRuotsi
KaupunkiLund
Ajanjakso29/10/2430/10/24

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Cycle Count Estimation of VLIW Processors Using Machine Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä