DCT-Based Color Image Denoising: Efficiency Analysis and Prediction

Vladimir Lukin, Sergey Abramov, Ruslan Kozhemiakin, Alexey Rubel, Mikhail Uss, Nikolay Ponomarenko, Victoriya Abramova, Benoit Vozel, Kacem Chehdi, Karen Egiazarian, Jaakko Astola

    Tutkimustuotos: LukuTieteellinenvertaisarvioitu

    13 Sitaatiot (Scopus)

    Abstrakti

    In practice, acquired color images are inevitably noisy, and filtering/denoising procedure is used to suppress the noise. Although numerous denoising techniques have been proposed, they are not universally efficient in all considered practical situations. There are also contradictory requirements to color image denoising and their priority can be different and strongly dependent on the situation at hand. This also complicates the choice of a proper filter. Color images can be filtered in a component-wise (e.g., R, G, and B components separately) and in 3D (vector) manner. The latter group of approaches usually produces better results but has certain shortcomings and is less developed. One more aspect is that filtering efficiency is often analyzed and compared using only standard metrics (criteria) often ignoring recently designed visual quality metrics. Finally, before starting applying image denoising, it is good to understand how efficient can it be and is it worth to perform such afiltering. Then, the task of predicting denoising efficiency becomes very interesting.
    AlkuperäiskieliEnglanti
    OtsikkoColor Image and Video Enhancement
    ToimittajatEmre Celebi, Michela Lecca, Bogdan Smolka
    KustantajaSpringer International Publishing
    Sivut55-80
    Sivumäärä26
    ISBN (painettu)978-3-319-09363-5
    DOI - pysyväislinkit
    TilaJulkaistu - 2015
    OKM-julkaisutyyppiA3 Kirjan tai muun kokoomateoksen osa

    Julkaisufoorumi-taso

    • Jufo-taso 2

    Sormenjälki

    Sukella tutkimusaiheisiin 'DCT-Based Color Image Denoising: Efficiency Analysis and Prediction'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä