Abstrakti
Defects in crystal lattice can influence remarkably performance of semiconductor devices. Such parameters as background doping and nonradiative recombination rate are widely caused by defects. High-quality material with low defect densities is in key-role when fabricating high-efficiency multijunction III-V semiconductor solar cells. GaInNAs(Sb) is a promising material for high-efficiency multijunction solar cells. Well over 40% conversion efficiencies have been demonstrated from molecular-beam-epitaxy grown three-junction solar cell with GaInNAsSb bottom junction [1]. However, relatively low growth temperatures and incorporation of N induces defects to
the material, reducing its current and voltage generation [2]. Therefore, detailed
knowledge about defects and their formation is essential when fabricating high-quality GaInNAs(Sb). We used capacitance spectroscopy to characterize defects in dilute nitride and antimonide materials. Defects and their influence on solar cell operation are discussed.
[1] P.B. J. Allen, V. Sabnis, M. Wiemer and H. Yuen, "44%-efficiency triple-junction solar cells," in 9th International Conference on Concentrator Photovoltaic Systems, Miyazaki, Japan, 2013.
[2] A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen and M. Guina, "Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells," Solar Energy Mater. Solar Cells, vol. 124, pp. 150-158, 2014.
the material, reducing its current and voltage generation [2]. Therefore, detailed
knowledge about defects and their formation is essential when fabricating high-quality GaInNAs(Sb). We used capacitance spectroscopy to characterize defects in dilute nitride and antimonide materials. Defects and their influence on solar cell operation are discussed.
[1] P.B. J. Allen, V. Sabnis, M. Wiemer and H. Yuen, "44%-efficiency triple-junction solar cells," in 9th International Conference on Concentrator Photovoltaic Systems, Miyazaki, Japan, 2013.
[2] A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen and M. Guina, "Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells," Solar Energy Mater. Solar Cells, vol. 124, pp. 150-158, 2014.
Alkuperäiskieli | Englanti |
---|---|
Tila | Julkaistu - 11 kesäk. 2015 |
Tapahtuma | Atomic-Scale Challenges in Advanced Materials - University of Turku, Turku, Suomi Kesto: 11 kesäk. 2015 → 12 kesäk. 2015 http://users.utu.fi/kokko/wfiles/group/conferences/ascam8/ascam8.html |
Workshop
Workshop | Atomic-Scale Challenges in Advanced Materials |
---|---|
Lyhennettä | ASCAM VIII |
Maa/Alue | Suomi |
Kaupunki | Turku |
Ajanjakso | 11/06/15 → 12/06/15 |
www-osoite |