Descriptive Complexity for Neural Networks via Boolean Networks

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

3 Lataukset (Pure)

Abstrakti

We investigate the descriptive complexity of a class of neural networks with unrestricted topologies and piecewise polynomial activation functions. We consider the general scenario where the running time is unlimited and floating-point numbers are used for simulating reals. We characterize these neural networks with a rule-based logic for Boolean networks. In particular, we show that the sizes of the neural networks and the corresponding Boolean rule formulae are polynomially related. In fact, in the direction from Boolean rules to neural networks, the blow-up is only linear. We also analyze the delays in running times due to the translations. In the translation from neural networks to Boolean rules, the time delay is polylogarithmic in the neural network size and linear in time. In the converse translation, the time delay is linear in both factors. We also obtain translations between the rule-based logic for Boolean networks, the diamond-free fragment of modal substitution calculus and a class of recursive Boolean circuits where the number of input and output gates match.
AlkuperäiskieliEnglanti
Otsikko32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)
ToimittajatAniello Murano, Alexandra Silva
JulkaisupaikkaDagstuhl, Germany
KustantajaSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Sivut9:1-9:22
Sivumäärä22
Vuosikerta288
ISBN (elektroninen)978-3-95977-310-2
DOI - pysyväislinkit
TilaJulkaistu - 27 helmik. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaComputer Science Logic - Naples, Italia
Kesto: 19 helmik. 202423 helmik. 2024

Julkaisusarja

NimiLeibniz International Proceedings in Informatics (LIPIcs)
KustantajaSchloss Dagstuhl -- Leibniz-Zentrum für Informatik
Vuosikerta288
ISSN (painettu)1868-8969

Conference

ConferenceComputer Science Logic
Maa/AlueItalia
KaupunkiNaples
Ajanjakso19/02/2423/02/24

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Descriptive Complexity for Neural Networks via Boolean Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä