Design an intelligent ballistocardiographic chair using novel QuickLearn and SF-ART algorithms and biorthogonal wavelets

Alireza Akhbardeh, Sakari Junnila, Teemu Koivistoinen, Alpo Värri

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    Abstrakti

    To design a heart diseases diagnosing system, we applied compactly supported Biorthogonal wavelet transform to extract essential features of the Ballistocardiogram (BCG) signal and to classify them using two novel supervised learning algorithms called SF-ART and QuickLearn. Initial tests with BCG from six subjects (both healthy and unhealthy people) indicate that both SF-ART and Quicklearn algorithms can classify the subjects into three classes with high accuracies, high learning speeds, and very low computational loads compared to the well-known neural networks such as Multilayer Perceptrons. The proposed heart diseases diagnosing systems are almost insensitive to latency and nonlinear disturbance. Moreover, the wavelet transform requires no prior knowledge of the statistical distribution of data samples and the computational complexity and training time are reduced.

    AlkuperäiskieliEnglanti
    Otsikko2006 IEEE International Conference on Systems, Man and Cybernetics
    Sivut878-883
    Sivumäärä6
    DOI - pysyväislinkit
    TilaJulkaistu - 28 elok. 2007
    OKM-julkaisutyyppiEi OKM-tyyppiä
    Tapahtuma2006 IEEE International Conference on Systems, Man and Cybernetics - Taipei, Taiwan
    Kesto: 8 lokak. 200611 lokak. 2006

    Conference

    Conference2006 IEEE International Conference on Systems, Man and Cybernetics
    Maa/AlueTaiwan
    KaupunkiTaipei
    Ajanjakso8/10/0611/10/06

    !!ASJC Scopus subject areas

    • Yleinen tekniikka

    Sormenjälki

    Sukella tutkimusaiheisiin 'Design an intelligent ballistocardiographic chair using novel QuickLearn and SF-ART algorithms and biorthogonal wavelets'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä