Detecting Anomalies in Textured Images Using Modified Transformer Masked Autoencoder

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

18 Lataukset (Pure)

Abstrakti

We present a new method for detecting and locating anomalies in textured-type images using transformer-based autoencoders. In this approach, a rectangular patch of an image is masked by setting its value to gray and then fetched into a pre-trained autoencoder with several blocks of transformer encoders and decoders in order to reconstruct the unknown part. It is shown that the pre-trained model is not able to reconstruct the defective parts properly when they are inside the masked patch. In this regard, the combination of the Structural Similarity Index Measure and absolute error between the reconstructed image and the original one can be used to define a new anomaly map to find and locate anomalies. In the experiment with the textured images of the MVTec dataset, we discover that not only can this approach find anomalous samples properly, but also the anomaly map itself can specify the exact locations of defects correctly at the same time. Moreover, not only is our method computatio nally efficient, as it utilizes a pre-trained model and does not require any training, but also it has a better performance compared to previous autoencoders and other reconstruction-based methods. Due to these reasons, one can use this method as a base approach to find and locate irregularities in real-world applications.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: VISAPP
ToimittajatPetia Radeva, Antonino Furnari, Kadi Bouatouch, A. Augusto Sousa
KustantajaScience and Technology Publications (SciTePress)
Sivut191-200
Vuosikerta2
ISBN (elektroninen)978-989-758-679-8
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Rome
Kesto: 27 helmik. 202429 helmik. 2024
Konferenssinumero: 19

Julkaisusarja

NimiVISIGRAPP
ISSN (painettu)2184-5921
ISSN (elektroninen)2184-4321

Conference

ConferenceInternational Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
KaupunkiRome
Ajanjakso27/02/2429/02/24

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Detecting Anomalies in Textured Images Using Modified Transformer Masked Autoencoder'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä