Detection of atrial fibrillation in ECG hand-held devices using a random forest classifier

Morteza Zabihi, A.B. Rad, Aggelos K. Katsaggelos, Serkan Kiranyaz, Susanna Narkilahti, Moncef Gabbouj

    Tutkimustuotos: Conference contributionScientificvertaisarvioitu

    61 Sitaatiot (Scopus)

    Abstrakti

    Atrial Fibrillation (AF) is characterized by chaotic electrical impulses in the atria, which leads to irregular heartbeats and can develop blood clots and stroke. Therefore, early detection of AF is crucial for increasing the success rate of the treatment. This study is focused on detection of AF rhythm using hand-held ECG monitoring devices, in addition to three other classes: normal or sinus rhythm, other rhythms, and too noisy to analyze. The pipeline of the proposed method consists of three major components: preprocessing and feature extraction, feature selection, and classification. In total, 491 hand-crafted features are extracted. Then, 150 features are selected in a feature ranking procedure. The selected features are from time, frequency, time-frequency domains, and phase space reconstruction of the ECG signals. In the final stage, a random forest classifier is used to classify the selected features into one of the four aforementioned ECG classes. Using the scoring mechanism provided by PhysioNet/Computing in Cardiology (CinC) Challenge 2017, the overall score (mean±std) of 81.9±2.6% is achieved over the training dataset in 10-fold cross-validation. The proposed algorithm tied for the first place in the PhysioNet/CinC Challenge 2017 with an overall score of 82.6% (rounded to 83%) on the unseen test dataset.

    AlkuperäiskieliEnglanti
    OtsikkoComputing in Cardiology 2017
    ToimittajatC Pickett, C Corsi, P Laguna, R MacLeod
    Sivut1-4
    Sivumäärä4
    Vuosikerta44
    DOI - pysyväislinkit
    TilaJulkaistu - 2017
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaCOMPUTING IN CARDIOLOGY CONFERENCE -
    Kesto: 1 tammikuuta 2017 → …

    Julkaisusarja

    NimiComputing in Cardiology
    ISSN (painettu)2325-8861

    Conference

    ConferenceCOMPUTING IN CARDIOLOGY CONFERENCE
    Ajanjakso1/01/17 → …

    Julkaisufoorumi-taso

    • Jufo-taso 1

    Sormenjälki

    Sukella tutkimusaiheisiin 'Detection of atrial fibrillation in ECG hand-held devices using a random forest classifier'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä