Detection of Curvilinear Structures by Tensor Voting Applied to Fiber Characterization

Nataliya Strokina, Tatiana Kurakina, Tuomas Eerola, Lasse Lensu, Heikki Kalviainen

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

5 Sitaatiot (Scopus)

Abstrakti

The paper presents a framework for the detection of curvilinear objects in images. Such objects are challenging to be described by a geometrical model, and although they appear in a number of applications, the problem of detecting curvilinear objects has drawn limited attention. The proposed approach starts with an edge detection algorithm after which the task of object detection becomes a problem of edge linking. A state-of-the-art local linking approach called tensor voting is used to estimate the edge point saliency describing the likelihood of a point belonging to a curve, and to extract the end points and junction points of these curves. After the tensor voting, the curves are grown from high-saliency seed points utilizing a linking method proposed in this paper. In the experimental part of the work, the method was systematically tested on pulp suspension images to characterize fibers based on their length and curl index. The fiber length was estimated with the accuracy of 71.5% and the fiber curvature with the accuracy of 70.7%.

AlkuperäiskieliEnglanti
OtsikkoIMAGE ANALYSIS, SCIA 2013
ToimittajatJK Kamarainen, M Koskela
KustantajaSpringer-Verlag, Berlin
Sivut22-33
Sivumäärä12
ISBN (painettu)978-3-642-38885-9
TilaJulkaistu - 2013
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
Tapahtuma18th Scandinavian Conference on Image Analysis (SCIA) - Espoo, Suomi
Kesto: 17 kesäk. 201320 kesäk. 2013

Julkaisusarja

NimiLecture Notes in Computer Science
KustantajaSPRINGER-VERLAG BERLIN
Vuosikerta7944
ISSN (painettu)0302-9743

Conference

Conference18th Scandinavian Conference on Image Analysis (SCIA)
Maa/AlueSuomi
KaupunkiEspoo
Ajanjakso17/06/1320/06/13

Sormenjälki

Sukella tutkimusaiheisiin 'Detection of Curvilinear Structures by Tensor Voting Applied to Fiber Characterization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä