Development of an England-wide indoor overheating and air pollution model using artificial neural networks

Phil Symonds, Jonathon Taylor, Zaid Chalabi, Anna Mavrogianni, Michael Davies, Ian Hamilton, Sotiris Vardoulakis, Clare Heaviside, Helen Macintyre

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

35 Sitaatiot (Scopus)

Abstrakti

With the UK climate projected to warm in future decades, there is an increased research focus on the risks of indoor overheating. Energy-efficient building adaptations may modify a buildings risk of overheating and the infiltration of air pollution from outdoor sources. This paper presents the development of a national model of indoor overheating and air pollution, capable of modelling the existing and future building stocks, along with changes to the climate, outdoor air pollution levels, and occupant behaviour. The model presented is based on a large number of EnergyPlus simulations run in parallel. A metamodelling approach is used to create a model that estimates the indoor overheating and air pollution risks for the English housing stock. The performance of neural networks (NNs) is compared to a support vector regression (SVR) algorithm when forming the metamodel. NNs are shown to give almost a 50% better overall performance than SVR.

AlkuperäiskieliEnglanti
Sivut606-619
Sivumäärä14
JulkaisuJOURNAL OF BUILDING PERFORMANCE SIMULATION
Vuosikerta9
Numero6
DOI - pysyväislinkit
TilaJulkaistu - 1 marrask. 2016
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

!!ASJC Scopus subject areas

  • Architecture
  • Building and Construction
  • Modelling and Simulation
  • Computer Science Applications

Sormenjälki

Sukella tutkimusaiheisiin 'Development of an England-wide indoor overheating and air pollution model using artificial neural networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä